-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
-
29
-
30
-
31
-
32
-
33
-
34
-
35
-
36
-
37
-
38
-
39
-
40
-
41
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
-
61
-
62
-
63
-
64
-
65
-
66
-
67
-
68
-
69
-
70
-
71
-
72
-
73
-
74
-
75
-
76
-
77
-
78
-
79
-
80
-
81
-
82
-
83
-
84
-
85
-
86
-
87
-
88
-
89
-
90
-
91
-
92
-
93
-
94
-
95
-
96
-
97
-
98
-
99
-
100
-
101
-
102
-
103
-
104
-
105
-
106
-
107
-
108
-
109
-
110
-
111
-
112
-
113
-
114
-
115
-
116
-
117
-
118
-
119
-
120
-
121
-
122
-
123
// Copyright 2025 Shota FUJI
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// SPDX-License-Identifier: Apache-2.0
const std = @import("std");
pub fn ObjectPool(comptime T: type, comptime size: usize) type {
const Availability = u32;
if (size > @bitSizeOf(Availability)) {
@compileError(
std.fmt.comptimePrint(
"ObjectPool size must be less than or equals to {d} (got {d})",
.{ @bitSizeOf(Availability), size },
),
);
}
return struct {
// a bit is set (1) = available, otherwise occupied.
// ex) Availability = u8, size = 5
// 0b00011111 = Fully available
// 0b00011110 = First item is occupied, second item is available
// 0b00000000.. = Fully occupied
availability: Availability = std.math.maxInt(Availability),
lock: std.Thread.Mutex = .{},
cond: std.Thread.Condition = .{},
size: usize = size,
pool: [size]T = undefined,
pub fn acquire(self: *@This()) *T {
self.lock.lock();
defer self.lock.unlock();
while (true) {
const index = @ctz(self.availability);
if (index < size) {
self.availability &= ~(@as(Availability, 0b1) << @min(std.math.maxInt(u5), index));
return &self.pool[index];
}
self.cond.wait(&self.lock);
}
}
pub fn release(self: *@This(), item: *const T) void {
defer self.cond.signal();
self.lock.lock();
defer self.lock.unlock();
const pool: [*]const T = &self.pool;
self.availability |= @as(Availability, 0b1) << @min(std.math.maxInt(u5), item - pool);
}
};
}
test ObjectPool {
const Pool = ObjectPool(usize, 5);
const num_items = 6;
const Runner = struct {
pool: Pool = .{},
threads: [num_items]std.Thread = undefined,
asserted: std.Thread.ResetEvent = .{},
wrote_lock: std.Thread.Mutex = .{},
wrote_times: usize = 0,
pool_exhausted: std.Thread.ResetEvent = .{},
pub fn run(self: *@This(), i: usize) void {
const item = self.pool.acquire();
defer self.pool.release(item);
item.* = i;
{
self.wrote_lock.lock();
defer self.wrote_lock.unlock();
self.wrote_times += 1;
if (self.wrote_times == 5) {
self.pool_exhausted.set();
}
}
self.asserted.wait();
}
};
var runner: Runner = .{};
for (&runner.threads, 1..) |*thread, i| {
thread.* = try std.Thread.spawn(.{}, Runner.run, .{ &runner, i });
}
errdefer for (runner.threads) |thread| {
thread.detach();
};
try runner.pool_exhausted.timedWait(std.time.ns_per_s);
for (runner.pool.pool) |item| {
try std.testing.expect(item > 0);
try std.testing.expect(item < 6);
}
runner.asserted.set();
for (runner.threads) |thread| {
thread.join();
}
try std.testing.expectEqual(num_items, runner.wrote_times);
}